VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (CBCS) I-Semester Supplementary (New/Old) Examinations, June/July-2019

Basic Engineering Mechanics

(Civil, EEE \& Mech. Engg.)
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. State the principle of Transmissibility.
2. Draw the sketch showing non-coplanar concurrent force system.
3. State Lami's theorem and explain with one example.
4. How do you represent a spatial force of magnitude $F=200 \mathrm{~N}$ between the points $\mathrm{A}(-4,2,4)$ and $\mathrm{B}(2,5,-3)$ in vector form.
5. What do you mean by a truss structure? Explain.
6. Differentiate between a perfect truss and a deficient truss.
7. Distinguish between coefficient of friction and angle of friction.
8. What is the importance of belt friction? Explain.
9. Define centroid. Write the expression for centroid of a semicircle of radius ' R '.
10. Determine radius of gyration of a right-angled triangle having base as ' b ' and height as ' h '.

Part-B ($5 \times 8=40$ Marks $)$
11. a) Find the values of P and F so that the four forces shown in the Fig. 1 produce an upward resultant of 300 N acting at 4 m from left end of the bar.

Fig. 1
b) The three forces shown in the Fig. 2 are required to cause a horizontal resultant acting through point A . If $\mathrm{T}=316 \mathrm{~N}$, determine the values of F and P . Consider the grid size to be 1 cm .

12. a) A 12 m bar of negligible weight rests in a horizontal position on the smooth inclines as shown in the Fig.3. Compute the distance x at which the load $\mathrm{T}=100 \mathrm{~N}$ should be placed from right end to keep the bar horizontal.

Fig. 3
b) In the Fig.4, a vertical boom AE is supported by guy wires from A to B, C and D. If tensile load in wire AD is 252 N , find the forces in AC and AB so that the resultant force on A is vertical.

Fig. 4
13. a) Explain step-by-step procedure of performing analysis of a truss using method of sections.
b) Determine the force in members DF, DG, and EG of the Howe truss, shown in Fig.5.

Fig. 5
14. a) For the block shown in Fig. 6 compute the frictional force exerted by the horizontal surface.

Fig. 6
b) A uniform ladder 3 m long weighs 600 N . It is placed against a vertical wall at an angle of 60° with the ground as shown in Fig.7. How far along the ladder can a 750 N man climb before the ladder is on the verge of slipping? Assume Coefficient of friction at all contact surfaces as 0.25 .

Fig. 7
15. a) Determine the distance of centroid of a right-angled triangle of base ' b ' and height ' h '.
b) Calculate moment of inertia of the I-section shown in Fig. 8 about its base.

Fig. 8
16. a) The moment of a certain force F is 180 Nm clockwise about O and 90 Nm counter clockwise about B. If the moment about A is zero, determine the force F. Refer Fig. 9.
b) A homogeneous smooth sphere rests on two inclines as shown in Fig.10. Determine the contact forces at A and B .

Fig. 9

Fig. 10
17. Answer any two of the following:
a) Perform analysis of the truss shown in Fig. 11.

Fig. 11
b) Compute the force P required to start the wedge of 400 N moving to the right. The angle of friction is 20° for all contact surfaces. Refer Fig. 12.
c) Calculate the centroid of the shaded area shown in Fig. 13.

Fig. 12

Fig. 13

